Package: waydown (via r-universe)

September 14, 2024

Type Package

Title Computation of Approximate Potentials for Weakly Non-Gradient Fields

Version 1.1.0

Author Pablo Rodríguez-Sánchez

Maintainer Pablo Rodríguez-Sánchez <pablo.rodriguez.sanchez@gmail.com>

Description Computation of approximate potentials for both gradient and non gradient fields. It is known from physics that only gradient fields, also known as conservative, have a well defined potential function. Here we present an algorithm, based on the classical Helmholtz decomposition, to obtain an approximate potential function for non gradient fields. More information in Rodríguez-Sánchez (2020) <doi:10.1371/journal.pcbi.1007788>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/PabRod/waydown

BugReports https://github.com/PabRod/waydown/issues

RoxygenNote 7.1.1

VignetteBuilder knitr

Suggests testthat, knitr, markdown, rmarkdown, deSolve, dplyr, colorRamps, ggplot2, gridExtra, latticeExtra, bindrcpp

Imports numDeriv, Matrix

Repository https://pabrod.r-universe.dev

RemoteUrl https://github.com/pabrod/waydown

RemoteRef HEAD

RemoteSha a6701c8a3bf3151c0e1f0bb5aa50cfe32362bc58

Contents

Index

																																							6
deltaV	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
approxPot2D	•	•	•	•	•					•	•										•			•	•		•		•		•			•		•	•		3
approxPot1D	•	•	•	•	•			•	•	•	•		•	•		•	•	•	•	•	•	•	•		•	•	•	•	•		•			•	•	•	•	•	2

approxPot1D

Approximate potential in one dimension

Description

Approximate potential in one dimension

Usage

approxPot1D(f, xs, V0 = "auto")

Arguments

f	One-dimensional representing the flow (right hand side of differential equation)
xs	Vector of positions to evaluate
VØ	(Optional) Value of V at first element of xs. When default, the global minimum is assigned 0

Value

The potential estimated at each point in xs

Author(s)

Pablo Rodríguez-Sánchez (https://pabrod.github.io)

References

https://doi.org/10.1371/journal.pcbi.1007788

See Also

approxPot2D, deltaV

2

approxPot2D

Examples

```
# Flow
f = function(x) { sin(x) }
# Sampling points
xs <- seq(0, 2*pi, length.out = 1e3)
# Approximated potential
Vs <- approxPot1D(f, xs)</pre>
```

approxPot2D Approximate potential in two dimensions

Description

Approximate potential in two dimensions

Usage

approxPot2D(f, xs, ys, V0 = "auto", mode = "mixed")

Arguments

f	Two-dimensional representing the flow (right hand side of differential equation)
XS	Vector xs positions to evaluate
ys	Vector of ys positions to evaluate
VØ	(Optional) Value of V at first element of (xs,ys). When default, the global minimum is assigned 0
mode	(Optional) Integration mode. Options are horizontal (default), vertical and mixed

Value

The potential estimated at each point (xs, ys)

Author(s)

Pablo Rodríguez-Sánchez (https://pabrod.github.io)

References

https://doi.org/10.1371/journal.pcbi.1007788

See Also

approxPot1D, deltaV

Examples

```
# Flow
f = function(x) {c(-x[1]*(x[1]^2 - 1.1), -x[2]*(x[2]^2 - 1))}
# Sampling points
xs <- seq(-1.5, 1.5, length.out = 10)
ys <- seq(-1.5, 1.5, length.out = 15)
# Approximated potential
Vs <- approxPot2D(f, xs, ys, mode = 'horizontal')</pre>
```

deltaV

Approximate potential difference between two points

Description

Approximate potential difference between two points

Usage

deltaV(f, x, x0, normType = "f")

Arguments

f	Flow equations (right hand side of differential equation)
x	Position where we want to know the approximate potential
×0	Reference position (center of the Taylor expansion)
normType	(default: 'f') Matrix norm used to compute the error

Value

A list containing the approximate potential difference between x and x0 and the estimated error

Author(s)

Pablo Rodríguez-Sánchez (https://pabrod.github.io)

References

https://doi.org/10.1371/journal.pcbi.1007788

See Also

approxPot1D, approxPot2D, norm

4

deltaV

Examples

```
# One dimensional flow
f <- function(x) { cos(x) }
# Evaluation points
x0 <- 1
x1 <- 1.02
dV <- deltaV(f, x1, x0)
# Two dimensional flow
f <- function(x) { c(
   -2*x[1]*x[2],
   -x[1]*2 - 1
)}
# Evaluation points
x0 <- matrix(c(1,2), ncol = 1)
x1 <- matrix(c(0.98,2.01), ncol = 1)
dV <- deltaV(f, x1, x0)</pre>
```

Index

approxPot1D, 2, *3*, *4* approxPot2D, *2*, *3*, *4*

deltaV, 2, 3, 4

norm, <mark>4</mark>